Studies on water transport through the sweet cherry fruit surface

Characterizing conductance of the cuticular membrane using pericarp segments

authored by
Moritz Knoche, Stefanie Peschel, Matthias Hinz, Martin J. Bukovac
Abstract

Water conductance of the cuticular membrane (CM) of mature sweet cherry fruit (Prunus avium L. cv. Sam) was investigated by monitoring water loss from segments of the outer pericarp excised from the cheek of the fruit. Segments consisted of epidermis, hypodermis and several cell layers of the mesocarp. Segments were mounted in stainless-steel diffusion cells with the mesocarp surface in contact with water, while the outer cuticular surface was exposed to dry silica (22 ± °C). Conductance was calculated by dividing the amount of water transpired per unit area and time by the difference in water vapour concentration across the segment. Conductance values had a log normal distribution with a median of 1.15 × 10-4 m s-1 (n=357). Transpiration increased linearly with time. Conductance remained constant and was not affected by metabolic inhibitors (1 mM NaN3 or 0.1 mM carbonylcyanide m-chlorophenylhydrazone) or thickness of segments (range 0.8-2.8 mm). Storing fruit (up to 42 d, 1 °C) used as a source of segments had no consistent effect on conductance. Conductance of the CM increased from cheek (1.16 ±0.10 x 10-4 m s-1) to ventral suture (1.32 ± 0.07 × 10-4m s-1) and to stylar end (2.53 ± 0.17 × 10-4 m s-1). There was a positive relationship (r2=0.066**; n=108) between conductance and stomatal density. From this relationship the cuticular conductance of a hypothetical astomatous CM was estimated to be 0.97 ± 0.09 × 10-4 m s-1. Removal of epicuticular wax by stripping with cellulose acetate or extracting epicuticular plus cuticular wax by dipping in CHCl3/methanol increased conductance 3.6- and 48.6-fold, respectively. Water fluxes increased with increasing temperature (range 10-39 °C) and energies of activation, calculated for the temperature range from 10 to 30 °C, were 64.8 ± 5.8 and 22.2 ± 5.0 kJ mol-1 for flux and vapour-concentration-based conductance, respectively.

External Organisation(s)
Martin Luther University Halle-Wittenberg
Michigan State University (MSU)
Type
Article
Journal
PLANTA
Volume
212
Pages
127-135
No. of pages
9
ISSN
0032-0935
Publication date
12.2000
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Genetics, Plant Science
Electronic version(s)
https://doi.org/10.1007/s004250000404 (Access: Closed)