Numerical Simulation Approach of Deep Rolling of AISI 52100 at Elevated Temperature

authored by
Bernd Breidenstein, Benjamin Bergmann, Steffen Heikebrügge, Henke Nordmeyer
Abstract

Hard turn rolling is a hybrid manufacturing process that affects the surface integrity of hardened components, aiming to enhance the lifespan of components such as rolling bearings. Hard turn rolling combines the thermal influence of hard turning with a subsequent deep rolling process to modify the properties of the surface and surface near layer. To better understand the effects of deep rolling on AISI 52100 at elevated temperature that are generated by the hard turning process, finite element simulations were conducted to analyze the surface formation at elevated temperatures. These simulations enable the estimation of the workpiece surface, guiding the optimal positioning of the deep rolling tool in alignment with the hard turning process. However, the results indicate that there is a buildup observed in the simulation, which was not detected in the experiments. The width of the rolling tracks in the simulation at different specimen temperatures of 20°C, 200°C, and 400°C does not exhibit significant differences. Only the rolling pressure has an influence on the width of the rolling tracks. By controlling the parameters of hard turn rolling, further investigations are possible to achieve enhanced surface and subsurface properties and improved performance of the hardened components in the future.

Organisation(s)
Institute of Production Engineering and Machine Tools
Type
Conference article
Journal
Procedia CIRP
Volume
121
Pages
7-12
No. of pages
6
ISSN
2212-8271
Publication date
2024
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Control and Systems Engineering, Industrial and Manufacturing Engineering
Electronic version(s)
https://doi.org/10.1016/j.procir.2023.09.222 (Access: Open)