First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory

authored by
J. D. Lough, E. Schreiber, Fabio Bergamin, Hartmut Grote, Moritz Mehmet, Henning Vahlbruch, Christoph Affeldt, Marc Brinkmann, Aparna Bisht, Volker Kringel, Harald Lück, Borja Sorazu, Kenneth Strain, N. Mukund, S. L. Nadji, M. Weinert, Karsten Danzmann
Abstract

Photon shot noise, arising from the quantum-mechanical nature of the light, currently limits the sensitivity of all the gravitational wave observatories at frequencies above one kilohertz. We report a successful application of squeezed vacuum states of light at the GEO 600 observatory and demonstrate for the first time a reduction of quantum noise up to 6.03±0.02 dB in a kilometer scale interferometer. This is equivalent at high frequencies to increasing the laser power circulating in the interferometer by a factor of 4. Achieving this milestone, a key goal for the upgrades of the advanced detectors required a better understanding of the noise sources and losses and implementation of robust control schemes to mitigate their contributions. In particular, we address the optical losses from beam propagation, phase noise from the squeezing ellipse, and backscattered light from the squeezed light source. The expertise gained from this work carried out at GEO 600 provides insight toward the implementation of 10 dB of squeezing envisioned for third-generation gravitational wave detectors.

Organisation(s)
QuantumFrontiers
Institute of Gravitation Physics
External Organisation(s)
Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Cardiff University
University of Glasgow
Type
Article
Journal
Physical review letters
Volume
126
No. of pages
7
ISSN
0031-9007
Publication date
26.01.2021
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
General Physics and Astronomy
Electronic version(s)
https://doi.org/10.1103/PhysRevLett.126.041102 (Access: Open)