Compactified Jacobians of Extended ADE Curves and Lagrangian Fibrations
- authored by
- Adam Czapliński, Andreas Krug, Manfred Lehn, Sönke Rollenske
- Abstract
We observe that general reducible curves in sufficiently positive linear systems on K3 surfaces are of a form that generalises Kodaira's classification of singular elliptic fibres and thus call them extended ADE curves. On such a curve \(C\), we describe a compactified Jacobian and show that its components reflect the intersection graph of \(C\). This extends known results when \(C\) is reduced, but new difficulties arise when \(C\) is non-reduced. As an application, we get an explicit description of general singular fibres of certain Lagrangian fibrations of Beauville-Mukai type.
- Organisation(s)
-
Institute of Algebraic Geometry
- External Organisation(s)
-
University of Siegen
- Type
- Article
- Journal
- Communications in Contemporary Mathematics
- Volume
- 26
- ISSN
- 0219-1997
- Publication date
- 09.03.2024
- Publication status
- Published
- Peer reviewed
- Yes
- Electronic version(s)
-
https://doi.org/10.48550/arXiv.2206.11686 (Access:
Open)
https://doi.org/10.1142/S0219199724500044 (Access: Closed)