Lithium ion mobility in lithium intercalated interstitially stabilized yttrium monochloride, LizYClZx (Z = H, C, O)

authored by
Heiner Mattfeld, Gert Balzer-Jöllenbeck, Gerd Meyer, Paul Heitjans
Abstract

Regions of homogeneity were determined for the systems LizYClHx, LizYCLCx and LizYCLOx. Cell parameters for the different samples are given and trends, especially for the length of the c axis, are discussed. Temperature dependent Guinier-Simon investigations on different LizYClHx compounds show a shortening of the c axis at 480°C, which must be interpreted as a deintercalation of lithium. Y2Cl3 forms upon decomposition of LizYClHx at 1100°C. Conductivity measurements on a pellet of 7Li0.15YClD0.65 give a specific resistance of 2.2 × 10-1 ω·cm at 298 K which hints at electronic conductivity. Cell parameters, atomic positional parameters and occupation factors gained from a neutron powder diffraction experiment on 7Li0.15YClD0.65 are reported. The line shape of 7Li-NMR powder spectra is consistent with lithium at a definite lattice site. For all samples motional narrowing starts below room temperature. In the system LizYClC0.5 pronounced diffusion induced peaks of the spin-lattice relaxation rate T-11(T) of 7Li are observed above room temperature which exhibit the temperature dependence typical of disordered systems. In Li0.15YClD0.65 the 7Li spin-lattice relaxation rate, at the applied field of 4.7 T, does not show a significant peak but a continuous increase with temperature in the range from 150 K to 800 K.

Organisation(s)
Institute of Physical Chemistry and Electrochemistry
Institute of Inorganic Chemistry
Type
Article
Journal
SOLID STATE IONICS
Volume
62
Pages
265-271
No. of pages
7
ISSN
0167-2738
Publication date
08.1993
Publication status
Published
Peer reviewed
Yes
ASJC Scopus subject areas
Chemistry(all), Materials Science(all), Condensed Matter Physics
Electronic version(s)
https://doi.org/10.1016/0167-2738(93)90381-C (Access: Unknown)