Quadratic Euler Characteristic of Symmetric Powers of Curves

verfasst von
Lukas F. Bröring, Anna M. Viergever
Abstract

We compute the quadratic Euler characteristic of the symmetric powers of a smooth, projective curve over any field k that is not of characteristic two, using the Motivic Gauss-Bonnet Theorem of Levine-Raksit. As an application, we show over a field of characteristic zero that the power structure on the Grothendieck-Witt ring introduced by Pajwani-Pál computes the compactly supported A^1-Euler characteristic of symmetric powers for all curves.

Organisationseinheit(en)
Institut für Algebraische Geometrie
Typ
Preprint
Publikationsdatum
25.04.2024
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)