Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor

verfasst von
Kürşad Turgay, Jeanette Hahn, Jan Burghoorn, David Dubnau
Abstract

Competence is a physiological state, distinct from sporulation and vegetative growth, that enables cells to bind and internalize transforming DNA. The transcriptional regulator ComK drives the development of competence in Bacillus subtilis. ComK is directly required for its own transcription as well as for the transcription of the genes that encode DNA transport proteins. When ComK is sequestered by binding to a complex of the proteins MecA and ClpC, the positive feedback loop leading to ComK synthesis is interrupted. The small protein ComS, produced as a result of signaling by a quorum-sensing two-component regulatory pathway, triggers the release of ComK from the complex, enabling comK transcription to occur. We show here, based on in vivo and in vitro experiments, that ComK accumulation is also regulated by proteolysis and that binding to MecA targets ComK for degradation by the ClpP protease in association with ClpC. The release of ComK from binding by MecA and ClpC, which occurs when ComS is synthesized, protects ComK from proteolysis. Following this release, the rates of MecA and ComS degradation by ClpCP are increased in our in vitro system. In this novel system, MecA serves to recruit ComK to the ClpCP protease and connects ComK degradation to the quorum-sensing signal-transduction pathway, thereby regulating a key developmental process. This is the first regulated degradation system in which a specific targeting molecule serves such a function.

Externe Organisation(en)
Public Health Research Institute - New York
Erasmus University Rotterdam
Typ
Artikel
Journal
EMBO Journal
Band
17
Seiten
6730-6738
Anzahl der Seiten
9
ISSN
0261-4189
Publikationsdatum
16.11.1998
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Neurowissenschaft, Molekularbiologie, Allgemeine Biochemie, Genetik und Molekularbiologie, Allgemeine Immunologie und Mikrobiologie