Essential positivity for Toeplitz operators on the Fock space

verfasst von
Robert Fulsche
Abstract

In this short note, we discuss essential positivity of Toeplitz operators on the Fock space, as motivated by a recent question of Perälä and Virtanen (Proc. Amer. Math. Soc. 151:4807–4815, 2023). We give a proper characterization of essential positivity in terms of limit operators. A conjectured characterization of essential positivity of Perälä and Virtanen is disproven when the assumption of radiality is dropped. Nevertheless, when the symbol of the Toeplitz operator is of vanishing mean oscillation, we show that the conjecture of Perälä and Virtanen holds true, even without radiality.

Organisationseinheit(en)
Institut für Analysis
Typ
Artikel
Journal
Integral Equations and Operator Theory
Band
96
Anzahl der Seiten
10
ISSN
0378-620X
Publikationsdatum
09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.1007/s00020-024-02770-x (Zugang: Offen)