Essential positivity for Toeplitz operators on the Fock space
- verfasst von
- Robert Fulsche
- Abstract
In this short note, we discuss essential positivity of Toeplitz operators on the Fock space, as motivated by a recent question of Perälä and Virtanen (Proc. Amer. Math. Soc. 151:4807–4815, 2023). We give a proper characterization of essential positivity in terms of limit operators. A conjectured characterization of essential positivity of Perälä and Virtanen is disproven when the assumption of radiality is dropped. Nevertheless, when the symbol of the Toeplitz operator is of vanishing mean oscillation, we show that the conjecture of Perälä and Virtanen holds true, even without radiality.
- Organisationseinheit(en)
-
Institut für Analysis
- Typ
- Artikel
- Journal
- Integral Equations and Operator Theory
- Band
- 96
- Anzahl der Seiten
- 10
- ISSN
- 0378-620X
- Publikationsdatum
- 09.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.1007/s00020-024-02770-x (Zugang:
Offen)