Riemannian metrics on Teichmüller space
- verfasst von
- Lutz Habermann, Jürgen Jost
- Abstract
On each compact Riemann surface Σ of genus p ≥ 1, we have the Bergman metric obtained by pulling back the flat metric on its Jacobian via the Albanese map. Taking the L2-product of holomorphic quadratic differentials w.r.t. this metric induces a Riemannian metric on the Teichmüller space Tp that is invariant under the action of the modular group. We investigate geometric properties of this metric as an alternative to the usually employed Weil-Petersson metric.
- Externe Organisation(en)
-
Ruhr-Universität Bochum
- Typ
- Artikel
- Journal
- Manuscripta mathematica
- Band
- 89
- Seiten
- 281-306
- Anzahl der Seiten
- 26
- ISSN
- 0025-2611
- Publikationsdatum
- 03.1996
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik