Riemannian metrics on Teichmüller space

verfasst von
Lutz Habermann, Jürgen Jost
Abstract

On each compact Riemann surface Σ of genus p ≥ 1, we have the Bergman metric obtained by pulling back the flat metric on its Jacobian via the Albanese map. Taking the L2-product of holomorphic quadratic differentials w.r.t. this metric induces a Riemannian metric on the Teichmüller space Tp that is invariant under the action of the modular group. We investigate geometric properties of this metric as an alternative to the usually employed Weil-Petersson metric.

Externe Organisation(en)
Ruhr-Universität Bochum
Typ
Artikel
Journal
Manuscripta mathematica
Band
89
Seiten
281-306
Anzahl der Seiten
26
ISSN
0025-2611
Publikationsdatum
03.1996
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik