Molecular structure of the 8.0 kDa subunit of cytochrome-c reductase from potato and its Δψ-dependent import into isolated mitochondria

verfasst von
Hans Peter Braun, Udo K. Schmitz
Abstract

The cytochrome-c reductase (EC 1.10.2.2) of the mitochondrial respiratory chain couples electron transport from ubiquinol to cytochrome c with proton translocation across the inner mitochondrial membrane. The enzyme from potato was shown to be composed of 10 subunits. Isolation and characterization of cDNA clones for the second smallest subunit reveal an open reading frame of 216 bp encoding a protein of 8.0 kDa. The protein exhibits similarities to a 7.2/7.3 kDa subunit of cytochrome-c reductase from bovine and yeast, that is localized on the intermembrane space side of the enzyme complex. It also shows similarity to a previously unidentified 7.8 kDa protein of cytochrome-c reductase from Euglena. The potato 8.0 kDa protein has a segmental structure, as its sequence can be devided into four parts, each comprising a central Arg-(Xaa)5-Val motif. N-terminal sequencing of the mature 8.0 kDa protein indicates the absence of a cleavable mitochondrial targeting sequence. Import of the in vitro synthesized 8.0 kDa protein into isolated potato mitochondria confirms the lack of a presequence and reveals a dependence of the transport on the membrane potatial Δψ across the inner mitochondrial membrane. These features are unique among the intermembrane space proteins known so far.

Externe Organisation(en)
Max-Planck-Institut für molekulare Pflanzenphysiologie
Typ
Artikel
Journal
BBA - Bioenergetics
Band
1229
Seiten
181-186
Anzahl der Seiten
6
ISSN
0005-2728
Publikationsdatum
26.04.1995
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Biophysik, Biochemie, Zellbiologie
Elektronische Version(en)
https://doi.org/10.1016/0005-2728(94)00199-F (Zugang: Offen)