Leveraging GPT Models For Semantic Table Annotation
- verfasst von
- Jean Petit Bikim, Carick Atezong, Azanzi Jiomekong, Allard Oelen, Gollam Rabby, Jennifer D’Souza, Sören Auer
- Abstract
This paper outlines our contribution to the Accuracy Track and the Semantic Table Interpretation (STI) & Large Language Models (LLMs) track of the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab). Our approach involves using LLMs to address the various tasks presented in the challenge. Specifically, we employed zero-shot and few-shot prompting techniques for most of the tasks, which facilitated the LLMs ability to interpret and annotate tabular data with minimal prior training. For the Column Property Annotation (CPA) task, we took a different approach by applying a set of predefined rules, tailored to the structure of each dataset. Our method achieved notable results, with an f1-score exceeding 0.92, demonstrating the effectiveness of LLMs in tackling the SemTab challenge. These results suggest that LLMs hold significant capabilities as a robust solution for semantic table annotation and knowledge graph matching, highlighting their potential to advance the field of semantic web technologies.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
University of Yaounde I
- Typ
- Aufsatz in Konferenzband
- Seiten
- 43-53
- Anzahl der Seiten
- 11
- Publikationsdatum
- 03.01.2025
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Computerwissenschaft
- Elektronische Version(en)
-
https://ceur-ws.org/Vol-3889/paper3.pdf (Zugang:
Offen)