Quantum Harmonic Analysis for Polyanalytic Fock Spaces

verfasst von
Robert Fulsche, Raffael Hagger
Abstract

We develop the quantum harmonic analysis framework in the reducible setting and apply our findings to polyanalytic Fock spaces. In particular, we explain some phenomena observed in recent work by the second author and answer a few related open questions. For instance, we show that there exists a symbol such that the corresponding Toeplitz operator is unitary on the analytic Fock space but vanishes completely on one of the true polyanalytic Fock spaces. This follows directly from an explicit characterization of the kernel of the Toeplitz quantization, which we derive using quantum harmonic analysis. Moreover, we show that the Berezin transform is injective on the set of of Toeplitz operators. Finally, we provide several characterizations of the C1-algebra in terms of integral kernel estimates and essential commutants.

Organisationseinheit(en)
Institut für Analysis
Externe Organisation(en)
Christian-Albrechts-Universität zu Kiel (CAU)
Typ
Artikel
Journal
Journal of Fourier Analysis and Applications
Band
30
ISSN
1069-5869
Publikationsdatum
01.11.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Allgemeine Mathematik, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1007/s00041-024-10124-9 (Zugang: Offen)