Intermetallic Compound Layer Morphology and Distribution in Friction-Welded Steel–Aluminum Components
- verfasst von
- Christoph Kahra, Armin Piwek, Julius Peddinghaus, Kai Brunotte, Hans Jürgen Maier, Florian Nürnberger, Sebastian Herbst
- Abstract
In this study, the morphology, distribution, and local thickness of the intermetallic compound layer (IMC-layer) in friction-welded steel-aluminum hybrid components used for Tailored Forming applications are investigated. By friction-welding of steel and aluminum, which is the first step in the Tailored Forming process chain, an IMC-layer in the joining zone is formed. In this study, the influence of friction-welding parameters, such as rotational speed, friction pressure, friction length, upsetting pressure, and upsetting time, on local IMC-layer thickness and distribution is examined. For characterization, a detailed analysis over the whole joining surface by means of scanning electron microscopy and a thorough statistical evaluation are employed. In the results, it is indicated that lower rotational speeds (700 rpm) in the friction phase result in more uniform and thinner IMC-layer (<0.5 μm), while higher speeds (1600 rpm) produce a thicker and more heterogeneous IMC- layer (up to 0.9 μm). Tensile tests show that specimens with thinner mean IMC-layer (0.17 μm) feature a higher tensile strength (244 MPa). The morphology and distribution of the IMC-layer over the cross section of the friction-welded specimen have a significant effect on the mechanical properties of the joint, with a uniform thin layer improving the tensile strength.
- Organisationseinheit(en)
-
Institut für Werkstoffkunde
Institut für Umformtechnik und Umformmaschinen
SFB 1153: Prozesskette zur Herstellung hybrider Hochleistungsbauteile durch Tailored Forming
- Typ
- Artikel
- Journal
- Advanced engineering materials
- ISSN
- 1438-1656
- Publikationsdatum
- 10.10.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Materialwissenschaften, Physik der kondensierten Materie
- Elektronische Version(en)
-
https://doi.org/10.1002/adem.202401606 (Zugang:
Offen)