KGSaw

One Size Does Not Fit All- Planning Methods for Data Fragmentation for Efficiently Creating Knowledge Graphs

verfasst von
Enrique Iglesias, Maria Esther Vidal
Abstract

This research addresses the challenges in planning knowledge graph (KG) creation. It presents KGSaw for partitioning and integrating data sources leveraging functional dependencies, while minimizing memory usage and execution time. Experimental results, involving existing KG creation engines, demonstrate KGSaw ability to enhance efficiency, with memory reductions up to 121.34 times and execution time improvements by a factor of 84.59. This emphasizes the importance of considering data source characteristics, like functional dependencies, in KG creation planning.

Organisationseinheit(en)
Institut für Data Science
Forschungszentrum L3S
Externe Organisation(en)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Aufsatz in Konferenzband
Seiten
1668-1670
Anzahl der Seiten
3
Publikationsdatum
21.05.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software
Elektronische Version(en)
https://doi.org/10.1145/3605098.3636186 (Zugang: Geschlossen)