KGSaw
One Size Does Not Fit All- Planning Methods for Data Fragmentation for Efficiently Creating Knowledge Graphs
- verfasst von
- Enrique Iglesias, Maria Esther Vidal
- Abstract
This research addresses the challenges in planning knowledge graph (KG) creation. It presents KGSaw for partitioning and integrating data sources leveraging functional dependencies, while minimizing memory usage and execution time. Experimental results, involving existing KG creation engines, demonstrate KGSaw ability to enhance efficiency, with memory reductions up to 121.34 times and execution time improvements by a factor of 84.59. This emphasizes the importance of considering data source characteristics, like functional dependencies, in KG creation planning.
- Organisationseinheit(en)
-
Institut für Data Science
Forschungszentrum L3S
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 1668-1670
- Anzahl der Seiten
- 3
- Publikationsdatum
- 21.05.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Software
- Elektronische Version(en)
-
https://doi.org/10.1145/3605098.3636186 (Zugang:
Geschlossen)