Invariance of the cone algebra without asymptotics

verfasst von
Elmar Schrohe
Abstract

Let B be a manifold with conical singularities, and denote by the smooth bounded manifold with cylindrical ends obtained by blowing up near the singularities. B.-W. Schulze has developed a framework for a pseudodifferential calculus on B by defining various classes of distribution spaces and operator algebras, working in fixed coordinates on the manifold. I am showing here that the Mellin Sobolev spaces without asymptotics, the cone algebra without asymptotics, and its ideal of smoothing operators are independent of the choice of coordinates and therefore may be considered intrinsic objects for manifolds with conical singularities.

Externe Organisation(en)
Universität Potsdam
Typ
Artikel
Journal
Annals of Global Analysis and Geometry
Band
14
Seiten
403-425
Anzahl der Seiten
23
ISSN
0232-704X
Publikationsdatum
11.1996
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Politikwissenschaften und internationale Beziehungen, Geometrie und Topologie
Elektronische Version(en)
https://doi.org/10.1007/BF00129899 (Zugang: Geschlossen)