Invariance of the cone algebra without asymptotics
- verfasst von
- Elmar Schrohe
- Abstract
Let B be a manifold with conical singularities, and denote by the smooth bounded manifold with cylindrical ends obtained by blowing up near the singularities. B.-W. Schulze has developed a framework for a pseudodifferential calculus on B by defining various classes of distribution spaces and operator algebras, working in fixed coordinates on the manifold. I am showing here that the Mellin Sobolev spaces without asymptotics, the cone algebra without asymptotics, and its ideal of smoothing operators are independent of the choice of coordinates and therefore may be considered intrinsic objects for manifolds with conical singularities.
- Externe Organisation(en)
-
Universität Potsdam
- Typ
- Artikel
- Journal
- Annals of Global Analysis and Geometry
- Band
- 14
- Seiten
- 403-425
- Anzahl der Seiten
- 23
- ISSN
- 0232-704X
- Publikationsdatum
- 11.1996
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Analysis, Politikwissenschaften und internationale Beziehungen, Geometrie und Topologie
- Elektronische Version(en)
-
https://doi.org/10.1007/BF00129899 (Zugang:
Geschlossen)