Branching Exponents of Synthetic Vascular Trees under Different Optimality Principles

verfasst von
Etienne Jessen, Marc C. Steinbach, Charlotte Debbaut, Dominik Schillinger
Abstract

<italic>Objective:</italic> The branching behavior of vascular trees is often characterized using Murray&#x0027;s law. We investigate its validity using synthetic vascular trees generated under global optimization criteria. <italic>Methods:</italic> Our synthetic tree model does not incorporate Murray&#x0027;s law explicitly. Instead, we show that its validity depends on properties of the optimization model and investigate the effects of different physical constraints and optimization goals on the branching exponent that is now allowed to vary locally. In particular, we include variable blood viscosity due to the F&#x00E5;hr&#x00E6;s&#x2013;Lindqvist effect and enforce an equal pressure drop between inflow and the micro-circulation. Using our global optimization framework, we generate vascular trees with over one million terminal vessels and compare them against a detailed corrosion cast of the portal venous tree of a human liver. <italic>Results:</italic> Murray&#x0027;s law is fulfilled when no additional constraints are enforced, indicating its validity in this setting. Variable blood viscosity or equal pressure drop lead to different optima but with the branching exponent inside the experimentally predicted range between 2.0 and 3.0. The validation against the corrosion cast shows good agreement from the portal vein down to the venules. <italic>Conclusion:</italic> Not enforcing Murray&#x0027;s law increases the predictive capabilities of synthetic vascular trees, and in addition reduces the computational cost. <italic>Significance:</italic> The ability to study optimal branching exponents across different scales can improve the functional assessment of organs.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Technische Universität Darmstadt
Universiteit Gent
Typ
Artikel
Journal
IEEE Transactions on Biomedical Engineering
Band
71
Seiten
1345-1354
Anzahl der Seiten
10
ISSN
0018-9294
Publikationsdatum
24.04.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Biomedizintechnik
Elektronische Version(en)
https://doi.org/10.1109/TBME.2023.3334758 (Zugang: Offen)