Kinematic mappings of plane affinities

verfasst von
Herbert Hotje
Abstract

In 1911 W. Blaschke and J. Grnwald described the group ℬ of proper motions of the euclidean plane ℰ in the following way: Let (P, script G sign)be the real three-dimensional projective space, let ℰ̄ ⊂ P be an isomorphic image of ℰ, and let U ∈ script G sign such that ℰ̄ ∪ U is the projective closure of ℰ̄ in P. Then there is a bijection κ : ℬ → P′ := P \U called the kinematic mapping and an injective mapping ℰ̄ × ℰ̄ → script G sign; (u, v) → [u, v] called the kinematic line mapping such that [u, v] := {β ∈ P′; β(u) = v} where the operation is denned by conjugation. A principle of transference is valid by which statements on group operations of (ℬ, ℰ) correspond with statements on incidence in the trace geometry of P′. Following Rath (1988) I will show that a similar concept holds for the group of affinities of the real plane where (P, script G sign) is part of and spans the six-dimensional real projective space.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Discrete mathematics
Band
155
Seiten
121-125
Anzahl der Seiten
5
ISSN
0012-365X
Publikationsdatum
01.08.1996
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik, Diskrete Mathematik und Kombinatorik
Elektronische Version(en)
https://doi.org/10.1016/0012-365X(94)00375-S (Zugang: Offen)