CauseKG

A Framework Enhancing Causal Inference With Implicit Knowledge Deduced From Knowledge Graphs

verfasst von
Hao Huang, Maria Esther Vidal
Abstract

Causal inference is a critical technique for inferring causal relationships from data and distinguishing causation from correlation. Causal inference frameworks rely on structured data, typically represented in flat tables or relational models. These frameworks estimate causal effects based only on explicit facts, overlooking implicit information in the data, which can lead to inaccurate causal estimates. Knowledge graphs (KGs) inherently capture implicit information through logical rules applied to explicit facts, providing a unique opportunity to leverage implicit knowledge. However, existing frameworks are not applicable to KGs due to their semi-structured nature. CauseKG is a causal inference framework designed to address the intricacies of KGs and seamlessly integrate implicit information using KG-specific entailment techniques, providing a more accurate causal inference process. We empirically evaluate the effectiveness of CauseKG against benchmarks constructed from synthetic and real-world datasets. The results suggest that CauseKG can produce a lower mean absolute error in causal inference compared to state-of-the-art methods. The empirical results demonstrate CauseKG's ability to address causal questions in a variety of domains. This research highlights the importance of extending causal inference techniques to KGs, emphasising the improved accuracy that can be achieved by integrating implicit and explicit information.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Artikel
Journal
IEEE ACCESS
Band
12
Seiten
61810-61827
Anzahl der Seiten
18
ISSN
2169-3536
Publikationsdatum
07.05.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Computerwissenschaft, Allgemeine Materialwissenschaften, Allgemeiner Maschinenbau
Elektronische Version(en)
https://doi.org/10.1109/ACCESS.2024.3395134 (Zugang: Offen)