Comparison of different Tate conjectures
- verfasst von
- Veronika Ertl, Timo Keller, Yanshuai Qin
- Abstract
For an abelian variety $A$ over a finitely generated field $K$ of characteristic $p > 0$, we prove that the algebraic rank of $A$ is at most a suitably defined analytic rank. Moreover, we prove that equality, i.e., the BSD rank conjecture, holds for $A/K$ if and only if a suitably defined Tate--Shafarevich group of $A/K$ (1) has finite $\ell$-primary component for some/all $\ell \neq p$, or (2) finite prime-to-$p$ part, or (3) has $p$-primary part of finite exponent, or (4) is of finite exponent. There is an algorithm to verify those conditions for concretely given $A/K$.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Preprint
- Publikationsdatum
- 24.06.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2012.01337 (Zugang:
Offen)