A Casimir operator for a Calogero W algebra

verfasst von
Francisco Correa, Gonzalo Leal, Olaf Lechtenfeld, Ian Marquette
Abstract

We investigate the nonlinear algebra W

3 generated by the 9 functionally independent permutation-symmetric operators in the three-particle rational quantum Calogero model. Decoupling the center of mass, we pass to a smaller algebra W 3 ′ generated by 7 operators, which fall into a spin-1 and a spin- 3 2 representation of the conformal sl(2) subalgebra. The commutators of the spin- 3 2 generators with each other are quadratic in the spin-1 generators, with a central term depending on the Calogero coupling. One expects this algebra to feature three Casimir operators, and we construct the lowest one explicitly in terms of Weyl-ordered products of the 7 generators. It is a polynomial of degree 6 in these generators, with coefficients being up to quartic in ℏ and quadratic polynomials in the Calogero coupling ℏ 2 g ( g − 1 ) . Putting back the center of mass, our Casimir operator for W

3 is a degree-9 polynomial in the 9 generators. The computations require the evaluation of nested Weyl orderings. The classical and free-particle limits are also given. Our scheme can be extended to any finite number N of Calogero particles and the corresponding nonlinear algebras W

N and W N ′ .

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Universidad de Santiago de Chile
University of Queensland
Typ
Artikel
Journal
Journal of Physics A: Mathematical and Theoretical
Band
57
ISSN
0022-3689
Publikationsdatum
12.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie, Statistische und nichtlineare Physik, Statistik und Wahrscheinlichkeit, Mathematische Physik, Modellierung und Simulation
Elektronische Version(en)
https://doi.org/10.1088/1751-8121/ad24ca (Zugang: Offen)