Space and Earth observations to quantify present-day sea-level change

verfasst von
Xiaoxing He, Jean Philippe Montillet, Gaël Kermarrec, C. K. Shum, Rui Fernandes, Jiahui Huang, Shengdao Wang, Xiwen Sun, Yu Zhang, Harald Schuh
Abstract

This chapter presents the contemporary technologies (e.g., tide-gauges, satellite altimetry) and some methodologies to process observations in order to estimate the sea level at a regional or global scale. We discuss the common biases (e.g., vertical land motion, ocean currents, instrumental noise) and how to address them. Highlighting the collaborative efforts of various global agencies, we emphasize a range of routinely updated data products aimed at facilitating sea level monitoring. We underscore a contemporary approach: the integration of machine learning and deep learning algorithms to handle big datasets. These tools promise to be potent instruments for analysing complex patterns, correlations, and nonlinear relationships that traditional models may struggle to capture effectively. Our aspiration is for the ongoing and future evolution of the applications based on these algorithms to furnish invaluable insights into regional variations, extreme events, and long-term trends of sea level change, aiding multi-decadal planning and bolstering resilience strategies crucial for policymakers.

Organisationseinheit(en)
Institut für Meteorologie und Klimatologie
Externe Organisation(en)
Jiangxi University of Science and Technology
University of Beira Interior
Physikalisch-Meteorologisches Observatorium World Radiation Center (PMOD/WRC)
The Ohio State University
East China Institute of Technology
Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum (GFZ)
Typ
Artikel
Journal
Advances in Geophysics
Band
65
Seiten
125-177
Anzahl der Seiten
53
ISSN
0065-2687
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Geophysik
Elektronische Version(en)
https://doi.org/10.1016/bs.agph.2024.06.001 (Zugang: Geschlossen)