Effect of Bond Hardness of Additively Manufactured Grinding Tool Bonds on Material Removal Efficiency during Single-Grain Cutting
- verfasst von
- Berend Denkena, Thomas Weißgärber, Thomas Studnitzky, Benjamin Bergmann, Alexander Strauß, Lennart Puls
- Abstract
In order to gain insight into the material removal mechanism of abrasive machining processes, single-grain cutting is a useful and widely adopted technique. In most of the works on this subject, the single abrasive grains are bonded to a substrate by soldering, electroplating or simple adhesive bonding. As a result, the grinding tool bond’s influence is largely neglected. This publication shows a new variant of single-grain cutting that makes it possible to quantify the influence of the bond on the material removal mechanism. Specimens with different bond hardness are prepared using a sintering-based additive printing process. In single-grain cutting experiments, the influence of the Rockwell hardness of different bond types on the material removal efficiency was investigated. Among other things, a reduction in the specific scratch energy by 40% and an increase in the grinding force ratio by 70% were found when using an iron-based bond with increased hardness, compared to a softer, steel-based bond. This is a result of an increased grain protrusion under load for the grains in the harder bonds which leads to an increased material removal efficiency.
- Organisationseinheit(en)
-
Institut für Fertigungstechnik und Werkzeugmaschinen
- Externe Organisation(en)
-
Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung (IFAM)
Technische Universität Dresden
- Typ
- Artikel
- Journal
- Journal of Materials Engineering and Performance
- Anzahl der Seiten
- 10
- ISSN
- 1059-9495
- Publikationsdatum
- 30.01.2025
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Materialwissenschaften, Werkstoffmechanik, Maschinenbau
- Elektronische Version(en)
-
https://doi.org/10.1007/s11665-025-10689-6 (Zugang:
Offen)