Data-based System Representations from Irregularly Measured Data

verfasst von
Mohammad Salahaldeen Ahmad Alsalti, Ivan Markovsky, Victor Gabriel Lopez Mejia, Matthias A. Müller
Abstract

Non-parametric representations of dynamical systems based on the image of a Hankel matrix of data are extensively used for data-driven control. However, if samples of data are missing, obtaining such representations becomes a difficult task. By exploiting the kernel structure of Hankel matrices of irregularly measured data generated by a linear time-invariant system, we provide computational methods for which any complete finite-length behavior of the system can be obtained. For the special case of periodically missing outputs, we provide conditions on the input such that the former result is guaranteed. In the presence of noise in the data, our method returns an approximate finite-length behavior of the system. We illustrate our result with several examples, including its use for approximate data completion in real-world applications and compare it to alternative methods.

Organisationseinheit(en)
Institut für Regelungstechnik
Externe Organisation(en)
Institució Catalana de Recerca i Estudis Avançats (ICREA)
International Centre for Numerical Methods in Engineering
Typ
Artikel
Journal
IEEE Transactions on Automatic Control
Band
70
Seiten
143 - 158
Anzahl der Seiten
16
ISSN
0018-9286
Publikationsdatum
04.07.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektrotechnik und Elektronik, Steuerungs- und Systemtechnik, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2307.11589 (Zugang: Offen)
https://doi.org/10.1109/TAC.2024.3423053 (Zugang: Geschlossen)