Do the Hodge Spectra Distinguish Orbifolds from Manifolds?
Part 1
- verfasst von
- Katie Gittins, Carolyn Gordon, Magda Khalile, Ingrid Membrillo Solis, Mary Sandoval, Elizabeth Stanhope
- Abstract
We examine the relationship between the singular set of a compact Riemannian orbifold and the spectrum of the Hodge Laplacian on p-forms by computing the heat invariants associated with the p-spectrum. We show that the heat invariants of the 0-spectrum together with those of the 1-spectrum for the corresponding Hodge Laplacians are sufficient to distinguish orbifolds with singularities from manifolds as long as the singular sets have codimension ≤ 3. This is enough to distinguish orbifolds from manifolds for dimension ≤ 3.
- Organisationseinheit(en)
-
Institut für Analysis
- Externe Organisation(en)
-
University of Durham
Dartmouth College
University of Southampton
Trinity College Hartford
Lewis and Clark College
- Typ
- Artikel
- Journal
- Michigan mathematical journal
- Band
- 74
- Seiten
- 571-598
- Anzahl der Seiten
- 28
- ISSN
- 0026-2285
- Publikationsdatum
- 07.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik
- Elektronische Version(en)
-
https://doi.org/10.48550/arXiv.2106.07882 (Zugang:
Offen)
https://doi.org/10.1307/mmj/20216126 (Zugang: Geschlossen)