Do the Hodge Spectra Distinguish Orbifolds from Manifolds?

Part 1

verfasst von
Katie Gittins, Carolyn Gordon, Magda Khalile, Ingrid Membrillo Solis, Mary Sandoval, Elizabeth Stanhope
Abstract

We examine the relationship between the singular set of a compact Riemannian orbifold and the spectrum of the Hodge Laplacian on p-forms by computing the heat invariants associated with the p-spectrum. We show that the heat invariants of the 0-spectrum together with those of the 1-spectrum for the corresponding Hodge Laplacians are sufficient to distinguish orbifolds with singularities from manifolds as long as the singular sets have codimension ≤ 3. This is enough to distinguish orbifolds from manifolds for dimension ≤ 3.

Organisationseinheit(en)
Institut für Analysis
Externe Organisation(en)
University of Durham
Dartmouth College
University of Southampton
Trinity College Hartford
Lewis and Clark College
Typ
Artikel
Journal
Michigan mathematical journal
Band
74
Seiten
571-598
Anzahl der Seiten
28
ISSN
0026-2285
Publikationsdatum
07.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2106.07882 (Zugang: Offen)
https://doi.org/10.1307/mmj/20216126 (Zugang: Geschlossen)