Non-isomorphic smooth compactifications of the moduli space of cubic surfaces

verfasst von
Sebastian Casalaina-Martin, Samuel Grushevsky, Klaus Hulek, Radu Laza
Abstract

The well-studied moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient MGIT, as a Baily–Borel compactification of a ball quotient (B4/Γ), and as a compactified K -moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup MK → MGIT, whereas from the ball quotient point of view, it is natural to consider the toroidal compactification B4/Γ → (B4/Γ). The spaces MK and B4/Γ have the same cohomology, and it is therefore natural to ask whether they are isomorphic. Here, we show that this is in fact not the case. Indeed, we show the more refined statement that MK and B4/Γ are equivalent in the Grothendieck ring, but not K -equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.

Organisationseinheit(en)
Institut für Algebraische Geometrie
Externe Organisation(en)
University of Colorado Boulder
Stony Brook University (SBU)
Typ
Artikel
Journal
Nagoya Mathematical Journal
Band
254
Seiten
315-365
Anzahl der Seiten
51
ISSN
0027-7630
Publikationsdatum
06.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2207.03533 (Zugang: Offen)
https://doi.org/10.1017/nmj.2023.27 (Zugang: Offen)