Spatial GARCH models for unknown spatial locations

an application to financial stock returns

verfasst von
Markus J. Fülle, Philipp Otto
Abstract

Spatial GARCH models, like all other spatial econometric models, require the definition of a suitable weight matrix. This matrix implies a certain structure for spatial interactions. GARCH-type models are often applied to financial data because the conditional variance, which can be translated as financial risks, is easy to interpret. However, when it comes to instantaneous/spatial interactions, the proximity between observations has to be determined. Thus, we introduce an estimation procedure for spatial GARCH models under unknown locations employing the proximity in a covariate space. We use one-year stock returns of companies listed in the Dow Jones Global Titans 50 index as an empirical illustration. Financial stability is most relevant for determining similar firms concerning stock return volatility.

Organisationseinheit(en)
Institut für Kartographie und Geoinformatik
Externe Organisation(en)
Georg-August-Universität Göttingen
Typ
Artikel
Journal
Spatial economic analysis
Band
19
Seiten
92-105
Anzahl der Seiten
14
ISSN
1742-1772
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Geografie, Planung und Entwicklung, Volkswirtschaftslehre, Ökonometrie und Finanzen (insg.), Statistik, Wahrscheinlichkeit und Ungewissheit, Erdkunde und Planetologie (sonstige)
Elektronische Version(en)
https://doi.org/10.6084/m9.figshare.24092144.v1 (Zugang: Offen)
https://doi.org/10.1080/17421772.2023.2237067 (Zugang: Geschlossen)