Can Editorial Decisions Impair Journal Recommendations?

Analysing the Impact of Journal Characteristics on Recommendation Systems

verfasst von
Elias Entrup, Ralph Ewerth, Anett Hoppe
Abstract

Recommendation services for journals help scientists choose appropriate publication venues for their research results. They often use a semantic matching process to compare e.g. an abstract against already published articles. As these services can guide a researcher’s decision, their fairness and neutrality are critical qualities. However, the impact of journal characteristics (such as the abstract length) on recommendations is understudied. In this paper, we investigate whether editorial journal characteristics can lead to biased rankings from recommendation services, i.e. if editorial choices can systematically lead to a better ranking of one’s own journal. The performed experiments show that longer abstracts or a higher number of articles per journal can boost the rank of a journal in the recommendations. We apply these insights to an active, open-source journal recommendation system. The adaptation of the algorithm leads to an increased accuracy for smaller journals.

Organisationseinheit(en)
Forschungszentrum L3S
Externe Organisation(en)
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Typ
Aufsatz in Konferenzband
Seiten
1062-1066
Anzahl der Seiten
5
Publikationsdatum
08.10.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Angewandte Informatik, Information systems, Software, Steuerungs- und Systemtechnik
Elektronische Version(en)
https://doi.org/10.1145/3640457.3688194 (Zugang: Offen)