Can Editorial Decisions Impair Journal Recommendations?
Analysing the Impact of Journal Characteristics on Recommendation Systems
- verfasst von
- Elias Entrup, Ralph Ewerth, Anett Hoppe
- Abstract
Recommendation services for journals help scientists choose appropriate publication venues for their research results. They often use a semantic matching process to compare e.g. an abstract against already published articles. As these services can guide a researcher’s decision, their fairness and neutrality are critical qualities. However, the impact of journal characteristics (such as the abstract length) on recommendations is understudied. In this paper, we investigate whether editorial journal characteristics can lead to biased rankings from recommendation services, i.e. if editorial choices can systematically lead to a better ranking of one’s own journal. The performed experiments show that longer abstracts or a higher number of articles per journal can boost the rank of a journal in the recommendations. We apply these insights to an active, open-source journal recommendation system. The adaptation of the algorithm leads to an increased accuracy for smaller journals.
- Organisationseinheit(en)
-
Forschungszentrum L3S
- Externe Organisation(en)
-
Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
- Typ
- Aufsatz in Konferenzband
- Seiten
- 1062-1066
- Anzahl der Seiten
- 5
- Publikationsdatum
- 08.10.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Angewandte Informatik, Information systems, Software, Steuerungs- und Systemtechnik
- Elektronische Version(en)
-
https://doi.org/10.1145/3640457.3688194 (Zugang:
Offen)