Ultrafast Recombination Dynamics under Lateral Confinement and Cryogenic Temperatures in Colloidal MoS2

verfasst von
André Philipp Frauendorf, André Niebur, Dominik Rudolph, Michael Oestreich, Jannika Lauth, Jens Hübner
Abstract

Colloidal synthesis opened up a versatile way to tailor two-dimensional transition metal dichalcogenides. In particular, the huge oscillator strength of excitons in colloidal MoS2 makes the material appealing for excitonic devices. In this context, we studied ultrafast excitons with transient absorption (TA) spectroscopy in MoS2 nanosheets (NSs, 22 ± 9 nm) and nanoplatelets (NPLs, 8 ± 4 nm) with NPLs providing additional lateral confinement of excitons in the structures. Carrier relaxation mechanisms are identified by extending the TA setup with a custom micro cryostat and by extracting time-dependent line shapes. The exciton lifetime in MoS2 NSs almost doubles from 12 to 22 ps by cooling the samples from 295 to 9 K, which is attributed to phonon scattering. Temperature-dependent recombination dynamics are found for the sparsely studied C and D excitons, thus covering the full visible spectrum by time-resolved characterization. For smaller MoS2 NPLs, the A exciton signature reappears at cryogenic temperatures, allowing laterally confined excitons in MoS2 to be extensively studied for the first time.

Organisationseinheit(en)
Institut für Festkörperphysik
Institut für Physikalische Chemie und Elektrochemie
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Laboratorium für Nano- und Quantenengineering
Externe Organisation(en)
Eberhard Karls Universität Tübingen
Typ
Artikel
Journal
Journal of Physical Chemistry C
Band
128
Seiten
16597–16606
Anzahl der Seiten
10
ISSN
1932-7447
Publikationsdatum
03.10.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Allgemeine Energie, Physikalische und Theoretische Chemie, Oberflächen, Beschichtungen und Folien
Elektronische Version(en)
https://doi.org/10.1021/acs.jpcc.4c04581 (Zugang: Offen)