Logical characterizations of algebraic circuit classes over integral domains
- verfasst von
- Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube
- Abstract
We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the ACℝ and NCℝ classes for this setting. We give a theorem in the style of Immerman's theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the ACℝ and NCℝ hierarchy. Those generalizations apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.
- Organisationseinheit(en)
-
Institut für Theoretische Informatik
- Externe Organisation(en)
-
Universität zu Lübeck
- Typ
- Artikel
- Journal
- Mathematical Structures in Computer Science
- Band
- 34
- Seiten
- 346-374
- Anzahl der Seiten
- 29
- ISSN
- 0960-1295
- Publikationsdatum
- 13.05.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (sonstige), Angewandte Informatik
- Elektronische Version(en)
-
https://doi.org/10.1017/S0960129524000136 (Zugang:
Offen)