Logical characterizations of algebraic circuit classes over integral domains

verfasst von
Timon Barlag, Florian Chudigiewitsch, Sabrina A. Gaube
Abstract

We present an adapted construction of algebraic circuits over the reals introduced by Cucker and Meer to arbitrary infinite integral domains and generalize the AC and NC classes for this setting. We give a theorem in the style of Immerman's theorem which shows that for these adapted formalisms, sets decided by circuits of constant depth and polynomial size are the same as sets definable by a suitable adaptation of first-order logic. Additionally, we discuss a generalization of the guarded predicative logic by Durand, Haak and Vollmer, and we show characterizations for the AC and NC hierarchy. Those generalizations apply to the Boolean AC and NC hierarchies as well. Furthermore, we introduce a formalism to be able to compare some of the aforementioned complexity classes with different underlying integral domains.

Organisationseinheit(en)
Institut für Theoretische Informatik
Externe Organisation(en)
Universität zu Lübeck
Typ
Artikel
Journal
Mathematical Structures in Computer Science
Band
34
Seiten
346-374
Anzahl der Seiten
29
ISSN
0960-1295
Publikationsdatum
13.05.2024
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (sonstige), Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.1017/S0960129524000136 (Zugang: Offen)