Decomposition numbers for abelian defect RoCK blocks of double covers of symmetric groups

verfasst von
Matthew Fayers, Alexander Kleshchev, Lucia Morotti
Abstract

We calculate the (super)decomposition matrix for a RoCK block of a double cover of the symmetric group with abelian defect, verifying a conjecture of the first author. To do this, we exploit a theorem of the second author and Livesey that a RoCK block (Formula presented.) is Morita superequivalent to a wreath superproduct of a certain quiver (super)algebra with the symmetric group (Formula presented.). We develop the representation theory of this wreath superproduct to compute its Cartan invariants. We then directly construct projective characters for (Formula presented.) to calculate its decomposition matrix up to a triangular adjustment, and show that this adjustment is trivial by comparing Cartan invariants.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Queen Mary University of London
University of Oregon
Typ
Artikel
Journal
Journal of the London Mathematical Society
Band
109
Anzahl der Seiten
49
ISSN
0024-6107
Publikationsdatum
31.01.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Elektronische Version(en)
https://doi.org/10.1112/jlms.12852 (Zugang: Offen)