Enhanced mechanical properties of Nb-18.7Si alloy by addition of ceramic nano particles for microstructural control
- verfasst von
- Elisa Holzmann, Khemais Barienti, Mattia Guglielmi, Egbert Baake, Sebastian Herbst, Hans Jürgen Maier
- Abstract
The phase composition, microstructure and mechanical properties of arc-melted eutectic Nb-18.7Si (at.-%) alloys with different nano-ceramic particle addition (Al2O3, TiC, SiC, 5 mol.-%) were investigated. The results showed that ceramic Al2O3 and TiC nanoparticle are thermally and chemically stable and can be used to tailor phase composition and refine the microstructure, while SiC dissolves completely in the melt. Al2O3 and TiC nanoparticle were found mainly in two different areas: (1) at grain boundaries of eutectic structures and (2) on the phase boundaries of silicides inside the eutectics. The presence of the particles refined the microstructure down to nano-scale lamellae by functioning as heterogeneous nuclei for the silicide phase. Without nano particle addition, the Nb-18.7Si alloy was mainly composed of Nb solid solution (Nbss) and Nb3Si. The addition of 5 mol.-% Al2O3 promoted the decomposition of the Nb3Si phase and an ultrafine nano-scale lamellar eutectic structure (Nbss + α-Nb5Si3) formed. With the addition of 5 mol.-% TiC, primary Nb3Si and coarse Nbss were observed, as well as fine eutectic Nbss + γ-Nb5Si3 structures. The complete dissolution of SiC led to a hypereutectic alloy with primary Nb3Si and γ-Nb5Si3 phase, coarse Nbss and eutectic Nbss + γ-Nb5Si3 structures. The compressive strength was increased from 3068 MPa to 3446 MPa by adding 5 mol.-% Al2O3 due to the formation of the high strength α-Nb5Si3 phase, the ultrafine nano-scale lamellar structures of Nbss + α-Nb5Si3 and the strong interface of Nbss/α-Nb5Si3. However, the small grain size of the Nbss phase was not effective in inhibiting crack propagation. Crack bridging and branching seem to be important mechanisms at the Nbss phase to inhibit crack propagation. Therefore, the size and distribution of Nbss play a key role. The results indicate that a continuous Nbss phase with embedded silicide phase and coarse Nbss phases can inhibit crack propagation.
- Organisationseinheit(en)
-
Institut für Werkstoffkunde
Institut für Elektroprozesstechnik
- Typ
- Artikel
- Journal
- INTERMETALLICS
- Band
- 176
- ISSN
- 0966-9795
- Publikationsdatum
- 22.11.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Chemie, Werkstoffmechanik, Maschinenbau, Metalle und Legierungen, Werkstoffchemie
- Elektronische Version(en)
-
https://doi.org/10.1016/j.intermet.2024.108577 (Zugang:
Offen)