Non-commutative friezes and their determinants, the non-commutative Laurent phenomenon for weak friezes, and frieze gluing
- verfasst von
- Michael Cuntz, Thorsten Holm, Peter Jørgensen
- Abstract
This paper studies a non-commutative generalisation of Coxeter friezes due to Berenstein and Retakh. It generalises several earlier results to this situation: A formula for frieze determinants, a T-path formula expressing the Laurent phenomenon, and results on gluing friezes together. One of our tools is a non-commutative version of the weak friezes introduced by Canakci and Jorgensen.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Aarhus University
- Typ
- Preprint
- Anzahl der Seiten
- 26
- Publikationsdatum
- 17.10.2024
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Elektronische Version(en)
-
https://arxiv.org/abs/2410.13507 (Zugang:
Offen)
https://doi.org/10.48550/arXiv.2410.13507 (Zugang: Offen)