Advancing oxygen separation

insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes

verfasst von
Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff
Abstract

In this study, perovskite-type La0.7Ca0.3Co0.3 Fe0.6M0.1O3−δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3−δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials. (Figure presented.)

Organisationseinheit(en)
Institut für Physikalische Chemie und Elektrochemie
Externe Organisation(en)
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie (IWKS)
Paul Scherrer Institut (PSI)
Technische Universität Darmstadt
Universität Stuttgart
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
Typ
Artikel
Journal
Frontiers of Chemical Science and Engineering
Band
18
Anzahl der Seiten
13
ISSN
2095-0179
Publikationsdatum
06.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine chemische Verfahrenstechnik
Elektronische Version(en)
https://doi.org/10.1007/s11705-024-2421-5 (Zugang: Geschlossen)