Advancing oxygen separation
insights from experimental and computational analysis of La0.7Ca0.3Co0.3Fe0.6M0.1O3−δ (M = Cu, Zn) oxygen transport membranes
- verfasst von
- Guoxing Chen, Wenmei Liu, Marc Widenmeyer, Xiao Yu, Zhijun Zhao, Songhak Yoon, Ruijuan Yan, Wenjie Xie, Armin Feldhoff, Gert Homm, Emanuel Ionescu, Maria Fyta, Anke Weidenkaff
- Abstract
In this study, perovskite-type La0.7Ca0.3Co0.3 Fe0.6M0.1O3−δ (M = Cu, Zn) powders were synthesized using a scalable reverse co-precipitation method, presenting them as novel materials for oxygen transport membranes. The comprehensive study covered various aspects including oxygen permeability, crystal structure, conductivity, morphology, CO2 tolerance, and long-term regenerative durability with a focus on phase structure and composition. The membrane La0.7Ca0.3Co0.3Fe0.6Zn0.1O3−δ exhibited high oxygen permeation fluxes, reaching up to 0.88 and 0.64 mL·min−1cm−2 under air/He and air/CO2 gradients at 1173 K, respectively. After 1600 h of CO2 exposure, the perovskite structure remained intact, showcasing superior CO2 resistance. A combination of first principles simulations and experimental measurements was employed to deepen the understanding of Cu/Zn substitution effects on the structure, oxygen vacancy formation, and transport behavior of the membranes. These findings underscore the potential of this highly CO2-tolerant membrane for applications in high-temperature oxygen separation. The enhanced insights into the oxygen transport mechanism contribute to the advancement of next-generation membrane materials. (Figure presented.)
- Organisationseinheit(en)
-
Institut für Physikalische Chemie und Elektrochemie
- Externe Organisation(en)
-
Fraunhofer-Einrichtung für Wertstoffkreisläufe und Ressourcenstrategie (IWKS)
Paul Scherrer Institut (PSI)
Technische Universität Darmstadt
Universität Stuttgart
Rheinisch-Westfälische Technische Hochschule Aachen (RWTH)
- Typ
- Artikel
- Journal
- Frontiers of Chemical Science and Engineering
- Band
- 18
- Anzahl der Seiten
- 13
- ISSN
- 2095-0179
- Publikationsdatum
- 06.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine chemische Verfahrenstechnik
- Elektronische Version(en)
-
https://doi.org/10.1007/s11705-024-2421-5 (Zugang:
Geschlossen)