Componentwise Dinkelbach algorithm for nonlinear fractional optimization problems

verfasst von
Christian Günther, Alexandru Orzan, Radu Precup
Abstract

The paper deals with fractional optimization problems where the objective function (ratio of two functions) is defined on a Cartesian product of two real normed spaces X and Y. Within this framework, we are interested to determine the so-called partial minimizers, i.e. points in (Formula presented.) with the property that any of its variables minimizes the objective function, restricted to this variable, with respect to the other one. While any global minimizer is obviously a partial minimizer, the reverse implication holds true only under additional assumptions (e.g. separability properties of the involved functions). By exploiting the particularities of the objective function, we deliver a Dinkelbach type algorithm for computing partial minimizers of fractional optimization problems. Further assumptions on the involved spaces and functions, such as Lipschitz-type continuity, partial Fréchet differentiability, and coercivity, enable us to establish the convergence of our algorithm to a partial minimizer.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Babeș-Bolyai University (UBB)
Technical University of Cluj-Napoca
Romanian Academy
Typ
Artikel
Journal
OPTIMIZATION
Band
73
Seiten
3323-3337
Anzahl der Seiten
15
ISSN
0233-1934
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerung und Optimierung, Managementlehre und Operations Resarch, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1080/02331934.2023.2256750 (Zugang: Geschlossen)