Near-field acoustic levitation generated by dual-frequency ultrasound
- verfasst von
- Fangyi Wang, Liang Wang, Jens Twiefel, Takeshi Morita
- Abstract
Near-field acoustic levitation (NFAL) offers many advantages over traditional non-contact methods, particularly in the fields of microelectromechanical systems and semiconductor processing. However, its application is limited by small levitation heights where maintaining a stable microscale gas film presents challenges. To address this issue, this paper investigates enhancing the load-carrying capacity (LCC) of NFAL systems through dual-frequency ultrasound (DFUS) technology. We first introduce the basic principles of NFAL, and theoretical modal based on the Reynolds equation, followed by a numerical solution using the Finite Difference Method (FDM). A multimodal coupled piezoelectric transducer operating in dual frequencies is proposed. Frequency compensation is achieved by altering the electrical boundaries of passive piezoelectric ceramics, overcoming the resonance frequency drift problem during high-power operation, and stable DFUS is generated. Experimental results demonstrate the impact of the second harmonic phase on levitation heights, revealing that optimized phase adjustments can significantly influence levitation height, with the optimal phase around 280°. With a radius of the acoustic radiation surface of 5 mm, and a gravitational load of 0.909 N, the results indicate that when a fundamental vibration with an amplitude of 3 μm is superimposed with a second harmonic of the same amplitude, DFUS at the optimal phase enhances levitation performance compared to single-frequency ultrasound (SFUS), with the increment rate of the levitation height reaching up to 78.5 % in the experiments. This study confirms the feasibility of DFUS for improving the performance of NFAL systems and lays the groundwork for future applications of dual-frequency ultrasound levitation.
- Organisationseinheit(en)
-
Institut für Dynamik und Schwingungen
- Externe Organisation(en)
-
Nanjing University of Aeronautics and Astronautics
University of Tokyo (UTokyo)
- Typ
- Artikel
- Journal
- Sensors and Actuators A: Physical
- Band
- 383
- Anzahl der Seiten
- 12
- ISSN
- 0924-4247
- Publikationsdatum
- 22.01.2025
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Elektronische, optische und magnetische Materialien, Instrumentierung, Physik der kondensierten Materie, Oberflächen, Beschichtungen und Folien, Metalle und Legierungen, Elektrotechnik und Elektronik
- Elektronische Version(en)
-
https://doi.org/10.1016/j.sna.2025.116224 (Zugang:
Offen)