Duality Assertions in Vector Optimization w.r.t. Relatively Solid Convex Cones in Real Linear Spaces

verfasst von
Christian Günther, Bahareh Khazayel, Christiane Tammer
Abstract

We derive duality assertions for vector optimization problems in real linear spaces based on a scalarization using recent results concerning the concept of relative solidness for convex cones (i.e., convex cones with nonempty intrinsic cores). In our paper, we consider an abstract vector optimization problem with generalized inequality constraints and investigate Lagrangian type duality assertions for (weak, proper) minimality notions. Our interest is neither to impose a pointedness assumption nor a solidness assumption for the convex cones involved in the solution concept of the vector optimization problem. We are able to extend the well-known Lagrangian vector duality approach by J. Jahn [Duality in vector optimization, Math. Programming 25 (1983) 343--353] to such a setting.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Martin-Luther-Universität Halle-Wittenberg
Typ
Artikel
Journal
Minimax Theory and its Applications
Band
9
Seiten
225-252
Anzahl der Seiten
28
ISSN
2199-1413
Publikationsdatum
10.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
Elektronische Version(en)
https://www.heldermann-verlag.de/mta/mta09/mta0180-b.pdf (Zugang: Geschlossen)