Forscher verschränken erstmals Ionen mittels Mikrowellen
Einer Forschergruppe am National Institute of Standards and Technology (NIST) in Boulder, USA, ist es gelungen, Ionen mittels Mikrowellen für den Einsatz in einem Quantencomputer zu verschränken. Wie das Wissenschaftsmagazin Nature berichtet, haben die Wissenschaftler damit eine wichtige Methode für die mögliche Realisierung eines integrierten Quantencomputers mit Ionen entwickelt (Microwave quantum logic gates for trapped ions, Nature 476, 181-184, 2011, doi:10.1038/nature10290). Christian Ospelkaus, seit Dezember 2010 Professor im Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time Research) an der Leibniz Universität Hannover und an der Physikalisch-Technischen Bundesanstalt in Braunschweig, hat das Experiment mit seinen Kollegen am NIST durchgeführt.
Verschränkung ist eine faszinierende Konsequenz der Quantenmechanik. In unserem Alltag gilt es als selbstverständlich, dass zum Beispiel zwei gemeinsam geworfene Münzen unabhängig voneinander jede für sich zufällig „Kopf oder Zahl“ zeigen. In der Welt der Quantenmechanik könnten die beiden Münzen nun so manipuliert werden, dass wenn eine Münze Zahl oder Kopf zeigt, die andere jeweils genau das gleiche Ergebnis liefert, und umgekehrt! Man spricht dann von einer Verschränkung der beiden Münzen oder – wenn man „Kopf oder Zahl“ wie in einem Computer mit den Werten Null und Eins identifiziert – auch von einem sogenannten verschränkenden Quantenlogikgatter. Solche verschränkenden Gatteroperationen sind ein wesentlicher Bestandteil eines Quantencomputers, der eines Tages bestimmte Probleme in Physik, Mathematik und Kryptographie (Ver- und Entschlüsselung) wesentlich schneller lösen könnte als der schnellste herkömmliche Supercomputer.
Ionen, also einzelne elektrisch geladene Atome, sind eines der experimentell am weitesten fortgeschrittenen Quantensysteme auf dem Weg zu einem realistischen Quantencomputer. In einer Reihe von grundlegenden Experimenten, die am NIST und in anderen Gruppen weltweit durchgeführt worden sind, konnten Ionen als Quantenbits, abgekürzt Qubits, mit Hilfe von Laserstrahlen bereits erfolgreich verschränkt werden. Die NIST Forschergruppe hat nun gezeigt, dass man solche Operationen nicht nur mit einem komplexen, raumfüllenden Lasersystem realisieren kann, sondern auch mit miniaturisierter Mikrowellenelektronik, wie sie zum Beispiel in Mobiltelefonen Verwendung findet. Um die Verschränkung zu erzeugen, integrieren die Physiker die Mikrowellenquelle in die Elektroden einer so genannten Chipfalle, einer mikroskopischen chipartigen Struktur zur Speicherung und Manipulation der Ionen in einer Vakuumzelle. „Weil Mikrowellenfelder unkomplizierter und in einer einfacher kontrollierbaren Weise erzeugt werden können als Laserstrahlen, könnte diese Methode uns helfen, leistungsfähigere und fehlertolerantere Experimente zu bauen“, erklärt Prof. Christian Ospelkaus.
In ihrem Experiment haben die Forscher die Erfolgsquote bei der Verschränkung charakterisiert und gezeigt, dass die Verschränkung der Ionen mit Mikrowellen in 76 Prozent aller Fälle funktioniert. Die bereits seit mehreren Jahren in der Forschung verwendeten laserbasierten Quantenlogikgatter sind mit einer Quote von 99,3 Prozent derzeit noch besser als die Gatter auf Basis von Mikrowellen. Das neue Experiment hat aber einen ganz entscheidenden Vorteil: Es beansprucht nur ungefähr ein Zehntel des Platzes eines Laser-Experiments und ist auf Basis dieses Pionierexperimentes noch deutlich optimierbar. In ihrer Veröffentlichung zeigt die Forschergruppe eine Reihe von Verbesserungsmöglichkeiten auf, welche die Erfolgsquote weiter steigern könnte. „Dass wir die Kontrolle der Qubits mit Hilfe der Mikrowellentechnik in die Fallenstruktur integriert haben und dadurch den Aufbau eines riesigen Lasersystems vermieden haben, ist ein wichtiger Schritt. In Zukunft könnten so durch diese Methode mehr und mehr Qubits verarbeiten werden“, so Ospelkaus weiter.
Mit seiner neuen Forschungsgruppe im Exzellenzcluster QUEST entwickelt Christian Ospelkaus ein mikroskopisches experimentelles Modellsystem, das zum besseren Verständnis von Quantenvielteilchensystemen beitragen soll. Die Mikrowellen-Quantenlogiktechniken, die er am NIST entwickelt hat, sind dabei ein wichtiger Baustein. Die Gruppe beschäftigt sich auch mit Anwendungen für fundamentale Präzisionsmessungen.
Die Forschungsarbeiten am NIST wurden unterstützt von der United States Intelligence Advanced Research Projects Activity (IARPA), Office of Naval Research (ONR), der Defense Advanced Research Projects Agency (DARPA), der National Security Agency (NSA) und Sandia National Laboratories.
Der Exzellenzcluster QUEST (Centre for Quantum Engineering and Space-Time-Research) wird seit November 2007 im Rahmen der Exzellenzinitiative von Bund und Ländern gefördert. Die Hauptforschungsbereiche des Clusters sind das Quantenengineering und die Raum-Zeit-Forschung. Beteiligt sind sechs Institute der Leibniz Universität Hannover sowie die folgenden externen Partner: Das Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) mit dem Gravitationswellendetektor GEO600, das Laser Zentrum Hannover e.V., die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und das Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) in Bremen.