Fe-Sn-N-C Catalysts

Advancing Oxygen Reduction Reaction Performance

verfasst von
Julia G. Buschermöhle, Julia Müller-Hülstede, Henrike Schmies, Dana Schonvogel, Tanja Zierdt, Rene Lucka, Franz Renz, Peter Wagner, Michael Wark
Abstract

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) typically rely on platinum-based catalysts, which require high loadings due to Pt deactivation by phosphates from the phosphoric acid-doped membrane. As alternative catalysts for the oxygen reduction reaction, metal-nitrogen-carbons (M-N-Cs) are promising due to their high intrinsic activity and tolerance to phosphates. However, low volumetric activity compared to Pt nanoparticles on carbon blacks (Pt/C) and insufficient stability limit their applicability. In order to enhance the stability and activity of Fe-N-Cs, this study investigates the incorporation of tin as a second metal, resulting in Fe-Sn-N-Cs, prepared by a metal-organic framework (MOF)-based approach. Stable and highly active catalysts with total mass activities of 8.2 A g-1 (Fe-Sn-N-C (1:1)) and 19.3 A g-1 (Fe-Sn-N-C (1:0.3)) in 0.5 mol L-1 H3PO4, drastically exceeding those of the commercial Fe-N-C catalyst PMF-014401 (Pajarito-Powder, 4.8 A g-1), are obtained by a synthesis without the need for subsequent purification steps. A stress test under harsh conditions (0.6-1.0 VRHE, 10,000 cycles, O2-saturated electrolyte) ascertains stability-enhancing effects of tin, highlighting an increase in stability in conjunction with the tin content. These results provide a valuable contribution to the development of cost-effective HT-PEMFCs by significantly enhancing the catalytic activity of platinum group metal-free catalysts.

Organisationseinheit(en)
Institut für Anorganische Chemie
Externe Organisation(en)
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
Carl von Ossietzky Universität Oldenburg
Typ
Artikel
Journal
ACS catalysis
Band
15
Seiten
4477-4488
Anzahl der Seiten
12
ISSN
2155-5435
Publikationsdatum
21.03.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Katalyse, Allgemeine Chemie
Elektronische Version(en)
https://doi.org/10.1021/acscatal.4c06338 (Zugang: Offen)