Optical heterodyne measurement of pulsed lasers

Toward high-precision pulsed spectroscopy

verfasst von
Michale S. Fee, K. Danzmann, Steven Chu
Abstract

In this paper we explore theoretically and experimentally the effect of fluctuations in the instantaneous frequency of a pulsed laser on the shape and position of two-photon transition spectra. The usual procedure of characterizing a pulsed laser by its frequency energy spectrum is insufficient for precision measurements. The nonlinear nature of the two-photon transition produces a systematic shift of the atomic spectrum with respect to the laser frequency spectrum that is dependent on the phase evolution of the laser pulse. In fact, any nonlinear process (e.g., second-harmonic generation) may result in displaced or distorted spectra. We also find that Fabry-Pérot filtering a laser pulse can result in large frequency chirps. We use an optical heterodyne technique to measure the instantaneous frequency of our excimer-pumped dye-laser system to an uncertainty of 1.3 MHz and determine the effect of the inherent frequency chirps of this system on a two-photon transition. We conclude that with this technique, precision nonlinear spectroscopy to the level of 1 MHz may be achieved with pulsed lasers.

Externe Organisation(en)
Stanford University
Typ
Artikel
Journal
Physical Review A
Band
45
Seiten
4911-4924
Anzahl der Seiten
14
ISSN
1050-2947
Publikationsdatum
04.1992
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Atom- und Molekularphysik sowie Optik
Elektronische Version(en)
http://hdl.handle.net/11858/00-001M-0000-0013-5C8F-C (Zugang: Offen)
https://doi.org/10.1103/PhysRevA.45.4911 (Zugang: Geschlossen)