Index theory for boundary value problems via continuous fields of C*-algebras

verfasst von
Johannes Aastrup, Ryszard Nest, Elmar Schrohe
Abstract

We prove an index theorem for boundary value problems in Boutet de Monvel's calculus on a compact manifold X with boundary. The basic tool is the tangent semi-groupoid T- X generalizing the tangent groupoid defined by Connes in the boundaryless case, and an associated continuous field Cr* (T- X) of C*-algebras over [0, 1]. Its fiber in ℏ = 0, Cr* (T- X), can be identified with the symbol algebra for Boutet de Monvel's calculus; for ℏ ≠ 0 the fibers are isomorphic to the algebra K of compact operators. We therefore obtain a natural map K0 (Cr* (T- X)) = K0 (C0 (T* X)) → K0 (K) = Z. Using deformation theory we show that this is the analytic index map. On the other hand, using ideas from noncommutative geometry, we construct the topological index map and prove that it coincides with the analytic index map.

Organisationseinheit(en)
Institut für Analysis
Externe Organisation(en)
Københavns Universitet
Westfälische Wilhelms-Universität Münster (WWU)
Typ
Artikel
Journal
Journal of functional analysis
Band
257
Seiten
2645-2692
Anzahl der Seiten
48
ISSN
0022-1236
Publikationsdatum
15.10.2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis
Elektronische Version(en)
https://doi.org/10.1016/j.jfa.2009.04.019 (Zugang: Befristet gesperrt)