Decomposing bulk signals to reveal hidden information in processive enzyme reactions

A case study in mRNA translation

verfasst von
Nadin Haase, Wolf Holtkamp, Simon Christ, Dag Heinemann, Marina V. Rodnina, Sophia Rudorf
Abstract

Processive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps. Using mRNA translation as a case study, we show that decomposing a noisy ensemble signal generated by the translation of mRNAs with more than a few codons is an ill-posed problem, addressable through Tikhonov regularization. We apply our method to the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position dependent translation rates and corresponding state-specific fluorescence intensities. We find a significant change in fluorescence intensity after the fourth and the fifth peptide bond formation, and show that both codon position and encoded amino acid have an effect on the elongation rate. This demonstrates that our approach enhances the information content extracted from bulk experiments, thereby expanding the range of these time- and cost-efficient methods.

Organisationseinheit(en)
Institut für Zellbiologie und Biophysik
Abteilung Computational Biology
Institut für Gartenbauliche Produktionssysteme
Externe Organisation(en)
Max-Planck-Institut für Multidisziplinäre Naturwissenschaften
Paul-Ehrlich-Institut Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel
Typ
Artikel
Journal
PLoS Computational Biology
Band
20
ISSN
1553-734X
Publikationsdatum
05.03.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Ökologie, Evolution, Verhaltenswissenschaften und Systematik, Modellierung und Simulation, Ökologie, Molekularbiologie, Genetik, Zelluläre und Molekulare Neurowissenschaften, Theoretische Informatik und Mathematik
Elektronische Version(en)
https://doi.org/10.1101/2023.05.17.541147 (Zugang: Offen)
https://doi.org/10.1371/journal.pcbi.1011918 (Zugang: Offen)