Large densities in a competitive two-species chemotaxis system in the non-symmetric case

verfasst von
Shohei Kohatsu, Johannes Lankeit
Abstract

This paper deals with the two-species chemotaxis system with Lotka–Volterra competitive kinetics ( Formula Presented), under homogeneous Neumann boundary conditions and suitable initial conditions, where Ω ⊂ Rn (n ∈ N) is a bounded domain with smooth boundary, d1, d2, d3, χ1, χ2, µ1, µ2 > 0, a1, a2 ≥ 0 and α, β, γ > 0. Under largeness conditions on χ1 and χ2, we show that for suitably regular initial data, any thresholds of the population density can be surpassed, which extends previous results of [38] to the non-symmetric case. The paper contains a well-posedness result for the hyperbolic–hyperbolic–elliptic limit system with d1 = d2 = 0.

Organisationseinheit(en)
Institut für Angewandte Mathematik
Externe Organisation(en)
Tokyo University of Science
Typ
Artikel
Journal
Communications on Pure and Applied Analysis
Band
23
Seiten
1296-1324
Anzahl der Seiten
29
ISSN
1534-0392
Publikationsdatum
09.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analysis, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2401.17521 (Zugang: Offen)
https://doi.org/10.3934/cpaa.2024057 (Zugang: Geschlossen)