Bounces/dyons in the plane wave matrix model and su(n) yang-mills theory

verfasst von
Alexander D. Popov
Abstract

We consider SU(N) Yang-Mills theory on the space ℝ × S 3 with Minkowski signature (-+++). The condition of SO(4)-invariance imposed on gauge fields yields a bosonic matrix model which is a consistent truncation of the plane wave matrix model. For matrices parametrized by a scalar φ, the Yang-Mills equations are reduced to the equation of a particle moving in the double-well potential. The classical solution is a bounce, i.e. a particle which begins at the saddle point φ = 0 of the potential, bounces off the potential wall and returns to φ = 0. The gauge field tensor components parametrized by φ are smooth and for finite time, both electric and magnetic fields are nonvanishing. The energy density of this non-Abelian dyon configuration does not depend on coordinates of ℝ × S 3 and the total energy is proportional to the inverse radius of S3. We also describe similar bounce dyon solutions in SU(N) Yang-Mills theory on the space ℝ × S2 with signature (-++). Their energy is proportional to the square of the inverse radius of S2. From the viewpoint of Yang-Mills theory on ℝ1,1 × S2 these solutions describe non-Abelian (dyonic) flux tubes extended along the x3-axis.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Joint Institute for Nuclear Research (JINR)
Typ
Artikel
Journal
Modern Physics Letters A
Band
24
Seiten
349-359
Anzahl der Seiten
11
ISSN
0217-7323
Publikationsdatum
20.02.2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Kern- und Hochenergiephysik, Astronomie und Astrophysik, Physik und Astronomie (insg.)
Elektronische Version(en)
https://doi.org/10.1142/S0217732309030163 (Zugang: Offen)