On the integral Hodge conjecture for real abelian threefolds

verfasst von
Olivier De Gaay Fortman
Abstract

We prove the real integral Hodge conjecture for several classes of real abelian threefolds. For instance, we prove the property for real abelian threefolds whose real locus is connected, and for real abelian threefolds A which are the product A = B × E of an abelian surface B and an elliptic curve E with connected real locus E (R). Moreover, we show that every real abelian threefold satisfies the real integral Hodge conjecture modulo torsion, and reduce the principally polarized case to the Jacobian case.

Organisationseinheit(en)
Institut für Algebraische Geometrie
Typ
Artikel
Journal
Journal fur die Reine und Angewandte Mathematik
Band
2024
Seiten
221-255
Anzahl der Seiten
35
ISSN
0075-4102
Publikationsdatum
01.02.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.1515/crelle-2023-0082 (Zugang: Geschlossen)