Method Comparison for Simulating Non-Gaussian Beams and Diffraction for Precision Interferometry

verfasst von
Mengyuan Zhao, Yazheng Tao, Kevin Weber, Tim Kaune, Sönke Schuster, Zhenxiang Hao, Gudrun Wanner
Abstract

In the context of simulating precision laser interferometers, we use several examples to compare two wavefront decomposition methods-the Mode Expansion Method (MEM) and the Gaussian Beam Decomposition (GBD) method-for their precision and applicability. To assess the performance of these methods, we define different types of errors and study their properties. We specify how the two methods can be fairly compared and based on that, compare the quality of the MEM and GBD through several examples. Here, we test cases for which analytic results are available, i.e., non-clipped circular and general astigmatic Gaussian beams, as well as clipped circular Gaussian beams, in the near, far, and extremely far fields of millions of kilometers occurring in space-gravitational wave detectors. Additionally, we compare the methods for aberrated wavefronts and their interaction with optical components by testing reflections from differently curved mirrors. We find that both methods can generally be used for decomposing non-Gaussian beams. However, which method is more accurate depends on the optical system and simulation settings. In the given examples, the MEM more accurately describes non-clipped Gaussian beams, whereas for clipped Gaussian beams and the interaction with surfaces, the GBD is more precise.

Organisationseinheit(en)
SFB 1464: Relativistische und quanten-basierte Geodäsie (TerraQ)
Institut für Gravitationsphysik
QuantumFrontiers
PhoenixD: Simulation, Fabrikation und Anwendung optischer Systeme
Externe Organisation(en)
Chinese Academy of Sciences (CAS)
Graduate University of Chinese Academy of Sciences
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Typ
Artikel
Journal
Sensors
Band
23
Anzahl der Seiten
1
ISSN
1424-8220
Publikationsdatum
07.11.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Analytische Chemie, Information systems, Instrumentierung, Atom- und Molekularphysik sowie Optik, Elektrotechnik und Elektronik, Biochemie
Elektronische Version(en)
https://doi.org/10.3390/s23229024 (Zugang: Offen)