Random-Matrix Models of Monitored Quantum Circuits

verfasst von
Vir B. Bulchandani, S. L. Sondhi, J. T. Chalker
Abstract

We study the competition between Haar-random unitary dynamics and measurements for unstructured systems of qubits. For projective measurements, we derive various properties of the statistical ensemble of Kraus operators analytically, including the purification time and the distribution of Born probabilities. The latter generalizes the Porter–Thomas distribution for random unitary circuits to the monitored setting and is log-normal at long times. We also consider weak measurements that interpolate between identity quantum channels and projective measurements. In this setting, we derive an exactly solvable Fokker–Planck equation for the joint distribution of singular values of Kraus operators, analogous to the Dorokhov–Mello–Pereyra–Kumar (DMPK) equation modelling disordered quantum wires. We expect that the statistical properties of Kraus operators we have established for these simple systems will serve as a model for the entangling phase of monitored quantum systems more generally.

Organisationseinheit(en)
Institut für Theoretische Physik
Externe Organisation(en)
Princeton University
University of Oxford
Typ
Artikel
Journal
Journal of statistical physics
Band
191
Anzahl der Seiten
31
ISSN
0022-4715
Publikationsdatum
03.05.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Statistische und nichtlineare Physik, Mathematische Physik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2312.09216 (Zugang: Offen)
https://doi.org/10.1007/s10955-024-03273-0 (Zugang: Offen)