On the relativization of chain topologies
- verfasst von
- Marcel Erné
- Abstract
The intrinsic topology s≤of a chain (X, ≤) induces on any subchain Y⊂X the relative topology s≤Y. On the other hand, any such subchain Y is endowed with its own intrinsic topology s≤y. We establish several necessary and sufficient conditions under which both topologies coincide, by suitably weakening the properties of convexity (Lemma 2), order-density (Theorem 3) and subcompleteness (Theorem 4), respectively. Another necessary and sufficient condition for the equation s≤y = s≤yformulated in terms of cuts, is given in Theorem 2. Besides other related results, we find a purely order-theoretical characterization of those subchains which are compact (Lemma 1) or connected (Corollary 2), respectively, in the intrinsic topology of the entire chain. As a simple consequence of Theorem 4, we obtain the wellknown result that the intrinsic topology of a chain can be obtained by relativization from the intrinsic topology of the normal completion (Corollary 9). We conclude with several applications to the Euclidean topology on R.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Pacific journal of mathematics
- Band
- 84
- Seiten
- 43-52
- Anzahl der Seiten
- 10
- ISSN
- 0030-8730
- Publikationsdatum
- 01.09.1979
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik
- Elektronische Version(en)
-
https://doi.org/10.2140/pjm.1979.84.43 (Zugang:
Offen)