On the relativization of chain topologies

verfasst von
Marcel Erné
Abstract

The intrinsic topology sof a chain (X, ≤) induces on any subchain Y⊂X the relative topology sY. On the other hand, any such subchain Y is endowed with its own intrinsic topology s≤y. We establish several necessary and sufficient conditions under which both topologies coincide, by suitably weakening the properties of convexity (Lemma 2), order-density (Theorem 3) and subcompleteness (Theorem 4), respectively. Another necessary and sufficient condition for the equation sy = s≤yformulated in terms of cuts, is given in Theorem 2. Besides other related results, we find a purely order-theoretical characterization of those subchains which are compact (Lemma 1) or connected (Corollary 2), respectively, in the intrinsic topology of the entire chain. As a simple consequence of Theorem 4, we obtain the wellknown result that the intrinsic topology of a chain can be obtained by relativization from the intrinsic topology of the normal completion (Corollary 9). We conclude with several applications to the Euclidean topology on R.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Pacific journal of mathematics
Band
84
Seiten
43-52
Anzahl der Seiten
10
ISSN
0030-8730
Publikationsdatum
01.09.1979
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Elektronische Version(en)
https://doi.org/10.2140/pjm.1979.84.43 (Zugang: Offen)