Active learning for the prediction of shape errors in milling

verfasst von
Berend Denkena, Marcel Wichmanna, Markus Rokickib, Lukas Stürenburg
Abstract

In machining processes, various influences, such as workpiece and tool geometry, process parameters or tool wear, can lead to decreasing part quality. Thus, predicting these influences to enable better process planning is essential. However, no general, analytical model is available to facilitate this. Data-driven approaches, on the other hand, are costly due to the required data labeling efforts. To address this, the authors present a data-driven active machine learning approach to predict shape errors based on process data enhanced by a material removal simulation. Using two representative pocket milling datasets, it is shown that this approach can yield better (up to 5 % decrease of RMSE) and more consistent (up to 85 % decrease in standard deviation of RMSE) model accuracy for a given budget of tactile probing points compared to a passive learning strategy.

Organisationseinheit(en)
Institut für Fertigungstechnik und Werkzeugmaschinen
Forschungszentrum L3S
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
Procedia CIRP
Band
126
Seiten
324-329
Anzahl der Seiten
6
ISSN
2212-8271
Publikationsdatum
2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik, Wirtschaftsingenieurwesen und Fertigungstechnik
Elektronische Version(en)
https://doi.org/10.1016/j.procir.2024.08.364 (Zugang: Offen)