Stabilizing Motion Tracking Using Retrieved Motion Priors

verfasst von
Andreas Baak, Bodo Rosenhahn, Meinard Müller, Hans Peter Seidel
Abstract

In this paper, we introduce a novel iterative motion tracking framework that combines 3D tracking techniques with motion retrieval for stabilizing markerless human motion capturing. The basic idea is to start human tracking without prior knowledge about the performed actions. The resulting 3D motion sequences, which may be corrupted due to tracking errors, are locally classified according to available motion categories. Depending on the classification result, a retrieval system supplies suitable motion priors, which are then used to regularize and stabilize the tracking in the next iteration step. Experiments with the HumanEVA-II benchmark show that tracking and classification are remarkably improved after few iterations.

Organisationseinheit(en)
Institut für Informationsverarbeitung
Externe Organisation(en)
Universität des Saarlandes
Typ
Konferenzaufsatz in Fachzeitschrift
Journal
Proceedings of the IEEE International Conference on Computer Vision
Seiten
1428-1435
Anzahl der Seiten
8
ISSN
1550-5499
Publikationsdatum
2009
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Maschinelles Sehen und Mustererkennung
Elektronische Version(en)
https://doi.org/10.1109/ICCV.2009.5459291 (Zugang: Geschlossen)