Completions for partially ordered semigroups

verfasst von
M. Erné, J. Z. Reichman
Abstract

A standard completion γ assigns a closure system to each partially ordered set in such a way that the point closures are precisely the (order-theoretical) principal ideals. If S is a partially ordered semigroup such that all left and all right translations are γ-continuous (i.e., Y∈γS implies {x∈S:y·x∈Y}∈γS and {x∈S:x·y∈Y}∈γS for all y∈S), then S is called a γ-semigroup. If S is a γ-semigroup, then the completion γS is a complete residuated semigroup, and the canonical principal ideal embedding of S in γS is a semigroup homomorphism. We investigate the universal properties of γ-semigroup completions and find that under rather weak conditions on γ, the category of complete residuated semigroups is a reflective subcategory of the category of γ-semigroups. Our results apply, for example, to the Dedekind-MacNeille completion by cuts, but also to certain join-completions associated with so-called "subset systems". Related facts are derived for conditional completions.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Hofstra University
Typ
Artikel
Journal
SEMIGROUP FORUM
Band
34
Seiten
253-285
Anzahl der Seiten
33
ISSN
0037-1912
Publikationsdatum
12.1986
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.1007/BF02573168 (Zugang: Geschlossen)