Completions for partially ordered semigroups
- verfasst von
- M. Erné, J. Z. Reichman
- Abstract
A standard completion γ assigns a closure system to each partially ordered set in such a way that the point closures are precisely the (order-theoretical) principal ideals. If S is a partially ordered semigroup such that all left and all right translations are γ-continuous (i.e., Y∈γS implies {x∈S:y·x∈Y}∈γS and {x∈S:x·y∈Y}∈γS for all y∈S), then S is called a γ-semigroup. If S is a γ-semigroup, then the completion γS is a complete residuated semigroup, and the canonical principal ideal embedding of S in γS is a semigroup homomorphism. We investigate the universal properties of γ-semigroup completions and find that under rather weak conditions on γ, the category of complete residuated semigroups is a reflective subcategory of the category of γ-semigroups. Our results apply, for example, to the Dedekind-MacNeille completion by cuts, but also to certain join-completions associated with so-called "subset systems". Related facts are derived for conditional completions.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Hofstra University
- Typ
- Artikel
- Journal
- SEMIGROUP FORUM
- Band
- 34
- Seiten
- 253-285
- Anzahl der Seiten
- 33
- ISSN
- 0037-1912
- Publikationsdatum
- 12.1986
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.1007/BF02573168 (Zugang:
Geschlossen)